GPatt: Fast Multidimensional Pattern Extrapolation with Gaussian Processes
نویسندگان
چکیده
Gaussian processes are typically used for smoothing and interpolation on small datasets. We introduce a new Bayesian nonparametric framework – GPatt – enabling automatic pattern extrapolation with Gaussian processes on large multidimensional datasets. GPatt unifies and extends highly expressive kernels and fast exact inference techniques. Without human intervention – no hand crafting of kernel features, and no sophisticated initialisation procedures – we show that GPatt can solve large scale pattern extrapolation, inpainting, and kernel discovery problems, including a problem with 383400 training points. We find that GPatt significantly outperforms popular alternative scalable Gaussian process methods in speed and accuracy. Moreover, we discover profound differences between each of these methods, suggesting expressive kernels, nonparametric representations, and exact inference are useful for modelling large scale multidimensional patterns.
منابع مشابه
Covariance Kernels for Fast Automatic Pattern Discovery and Extrapolation with Gaussian Processes
Truly intelligent systems are capable of pattern discovery and extrapolation without human intervention. Bayesian nonparametric models, which can uniquely represent expressive prior information and detailed inductive biases, provide a distinct opportunity to develop intelligent systems, with applications in essentially any learning and prediction task. Gaussian processes are rich distributions ...
متن کاملFast Kernel Learning for Multidimensional Pattern Extrapolation
The ability to automatically discover patterns and perform extrapolation is an essential quality of intelligent systems. Kernel methods, such as Gaussian processes, have great potential for pattern extrapolation, since the kernel flexibly and interpretably controls the generalisation properties of these methods. However, automatically extrapolating large scale multidimensional patterns is in ge...
متن کاملGaussian Process Covariance Kernels for Pattern Discovery and Extrapolation
Gaussian processes are rich distributions over functions, which provide a Bayesian nonparametric approach to smoothing and interpolation. We introduce simple closed form kernels that can be used with Gaussian processes to discover patterns and enable extrapolation. These kernels are derived by modelling a spectral density – the Fourier transform of a kernel – with a Gaussian mixture. The propos...
متن کاملGaussian Process Kernels for Pattern Discovery and Extrapolation
Gaussian processes are rich distributions over functions, which provide a Bayesian nonparametric approach to smoothing and interpolation. We introduce simple closed form kernels that can be used with Gaussian processes to discover patterns and enable extrapolation. These kernels are derived by modelling a spectral density – the Fourier transform of a kernel – with a Gaussian mixture. The propos...
متن کاملFast Multidimensional Scaling using Vector Extrapolation
Multidimensional scaling (MDS) is a class of methods used to find a low-dimensional representation of a set of points given a matrix of pairwise distances between them. Problems of this kind arise in various applications, from dimensionality reduction of image manifolds to psychology and statistics. In many of these applications, efficient and accurate solution of an MDS problem is required. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1310.5288 شماره
صفحات -
تاریخ انتشار 2013